
ISRAEL JOURNAL OF MATHEMATICS, Vol. 39, Nos. 1-2, 1981 

CONDITIONAL PRESSURE A N D  CODING 

BY 

SELIM TUNCEL 

ABSTRACT 

We use pressure to obtain invariants for bounded-to-one block homomorphisms 
between Markov shifts. These invariants enable us to show that if there is a 
bounded-to-one block homomorphism between Bernoulli shifts given by proba- 
bility vectors p and q then q may be obtained from p by a permutation. The 
invariants may be viewed as conditional pressures; a convergence theorem for 
eigenmeasures of Ruelle operators motivates the definition of conditional 
pressure and helps establish our invariants for regular isomorphism of Markov 
shifts. It follows that Bernoulli shifts given by probability vectors p and q are 
regularly isomorphic iff q is a permutation of p. We employ our invariants also 
in the context of a finite equivalence. Finally we indicate that ratio variational 
principles yield further invariants. 

§0. Introduction 

Since the powerful  results of Ornste in  [7] and Fr i edman  and Ornste in  [3] on 

isomorphisms of Bernoull i  and of Markov  shifts, various new types of isomor-  

phism have been  in t roduced and investigated. These  isomorphisms,  in addit ion 

to preserving measure,  respect some extra structure and are of greater  interest 

f rom the point  of view of coding theory.  One  impor tan t  example is the concept  

of finitary i somorphism for which Keane  and Smorodinsky  have recently 

ob ta ined  comple te  results ([4], [5]). In this note  we consider  block codes and 

regular isomorphisms.  

We start by listing definitions, nota t ion and some propert ies  of topological  

Markov  chains, pressure and Ruelle opera tors  on one-sided topological  Markov  

chains. Then  we use pressure to obtain  invariants of block i somorphism and 

show that  two Bernoull i  shifts are block isomorphic  if and only if there is a trivial 

block i somorphism between them. In fact, block h o m o m o r p h i s m s  exist be tween  

two Bernoull i  shifts of  the same en t ropy  only when one of the spaces can be 

obta ined  f rom the o ther  by a permuta t ion  of states. 
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In the third section we prove, for Ruelle measures (eigenmeasures of Ruelle 

operators), a convergence theorem which suggests a way of defining a condi- 

tional pressure. The type of limit considered in this theorem is used in the fourth 

section to establish our invariants (for block isomorphism) as regular isomor- 

phism invariants, showing that two Bernoulli shifts are regularly isomorphic if 

and only if there is a trivial (regular) isomorphism between them. In the final 

section we use our invariants in the context of a measure theoretic-topological 

finite equivalence derived from the purely topological equivalence relations of 

[1] and [8]. We also prove a ratio variational principle and indicate how it may 

yield invariants. 

I am grateful to my research supervisor Professor William Parry for his 

invaluable guidance and encouragement.  

§1. Topological Markov chains, pressure and Ruelle operators 

Let A be an n x n irreducible 0-1 matrix. Give {1 ,2 , . . . ,  n} the discrete 

topology and E = II7~ {1 , . . . ,  n } the product topology. Consider the subspace X 

of E defined 

X = {x = (x,) E E : A (x,, x, +1) = 1 Vi E Z }. 

The shift T is defined by (Tx)~ = x~+~ for x = (x,). T is a homeomorphism of the 

compact, metrizable space X. On X we use the metric d(x, y) = l/(k + 1) when k 

is the greatest integer with x~ = y, ~' - k < i < k. (X, T) is the topologicalMarkov 
chain (or subshift of finite type) given by A. If P is an n x n stochastic matrix 

compatible with A (i.e. P( i , j )=0  iff A(i, j)=O), the (shift invariant) Markov 

measure defined by P has as its support the topological Markov chain given by 

A. We will always regard Markov measures as being defined on their supporting 

topological Markov chains. The sets 

[i , , . . . i ,]m={(x,)EX:x, , ,=i, , ,x , , , , ,=i, , ' . . ,x , , ,+,=i,}  ( l ,m~Z, l>=O) 

are cylinders. They form a base for the topology of X. Write [ i 0""  i~] for 

[i,,-- • i,]". The state partition consists of [i], 1 <_- i _-< n. 

Given A as above, we define E ' =  I I , ;{1, . . . ,n} and 

x '  = {(x , )~  ~ :A(x,,x,+,)= 1 Vi _->01. 

The shift (Tx), = x~,, i >_- O, is now a continuous surjection and (X ÷, T) is called 

the one-sided subshift o[ finite type (topological Markov chain ) defined by A. We 

put on the compact space X + the metric d ( x , y ) =  1/(k + 1) when k is the 
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greatest integer with xi =y i  V0-< i < k. Cylinders and the state partition are 

similar to the two-sided case. We denote by M ( X  ÷) (M(X) in the two-sided 
case) the set of Borel probability measures on the space. 

For f E C(X), (X, T) subshift of finite type, write S.[ for ET-d f o T'. Put 

P.f = E,o. ...... (supy~t,0 ....... l exp S.f(y)) where the sum is over all allowed words 

xo - - .x . - ,  (i.e. all words x0-- -x . - t  with [ x o " ' x , - , ] ~ ) ) .  P ( / ) =  

l i m . ~  (1/n)log P. (f) exists and is the pressure off. P: C(X)--* R is a continuous 

map and 

(*) P( / )  = sup{h(m) + f f d m  : m E M(X)  is T-invariant}, 

where h(m) is the entropy of T with respect to m. 

The above definitions and statements hold when X is replaced by X ÷. In fact 

Waiters' paper, [16], contains definitions of pressure for f E C(Y)  where Y is a 

compact metric space with continuous T : Y--* Y. See [16] also for the properties 

of pressure and a proof of (*). We will use the following: 

P ( f  + g o T - g) = P(f)  for f, g ~ C(X). 

If w:X,--->X2 is a bounded-to-one continuous surjective map between 

subshifts of finite type (X,, T,) and (X2, T2) and f ~ C(X2), then P ( f  o 7r) = P(f) .  

Let (X ÷, T) be a one-sided subshift of finite type given by the matrix A. 

(X ÷, T) is topologically mixing itI A is aperiodic (i.e. iff A M > 0  for some 

M > 0). For 4' E C(X ÷) the Ruelle operator .Y, : C(X+)---> C(X ÷) is defined 

( ~ f ) ( x ) =  ~ e*")l(y). 
yET-Ix 

.~, is positive, finear and continuous. Denote its spectral radius by r ( ~ ) .  Put 

var. 4' = sup{ 14 ' (x)-  4'(Y)l: x0 = yo, xl = y l , ' "  ", x._~ = y._,}. In [15] Waiters 
combines results by Ruelle and Keane to give a proof of: 

RUELLE'S OPERATOR THEOREM (RUELLE'S PERRON--FROBENIUS THEOREM). Let 

(X  +, T) be a topologically mixing one-sided subshift of finite type. Let 4' E C(X  +) 
satisfy Y~I  var. 4' < oo. There exist A > O, h E C(X +) and v E M ( X  +) such that 
h > 0 ,  v ( h ) =  1, .~,h = Ah, .Y~v = Av and, for f ~  C(X+), A-".~f--->v(f)h in 
C(X+). A, h and v are uniquely defined by these properties and A = e Pt~') = r(.Z~ ). 
Moreover I • ~ M ( X  +) defined i~(f) = v(hf), f E C(X÷), is the only T-invariant 
probability with h (Ix) + f Odlz = P(4" ). 

For any 4' ~ C(X+), there is A > 0 and v E M ( X  +) with . ~ v  -- Av, by the 
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Schauder-Tychonov fixed point theorem. We shall see that there is precisely one 

such A, A = e e~*). Call v E M ( X  +) satisfying ~ $ v  = Av a Ruelle measure for ~b. 

For references on the above, and an excellent account, see [15]. 

§2. Block codes and pressure 

Let (X~, T,, r~) be finite state processes with state partitions ai (i = 1,2). A 

homomorphism ¢k:X1--*X2 (i.e. a measure-preserving map defined a.e. and 

satisfying 4~T1 = T24~ a.e.) is a block homomorphism (or a block code) if there 

exists p E N such that each ~b-'A, A E a2, may be written as a union of sets in 
the (refined) partition V,P=_pT'a,. An isomorphism (a.e. invertible homomor- 

phism) ,b : X,---~X2 is a block isomorphism if both ~b and ~b -~ are block codes. 

[•2] contains a discussion of the problem of block isomorphism of Markov 

chains. 

The information cocycle of a finite state process (X, T, m) with state partition 

a is IT = I ( a  [ a - ) =  - E a ~ X a  log m ( A [ a - )  where a -  = V~ T-~a denotes the 

smallest or-algebra containing the partitions T-~a, i => 1. 

We need the following two results: 

1. PROeOSrnON [11]. Let qb:XI--*X2 be a block homomorphism (resp. 

isomorphism) of Markov shilts (X~, T~,m,), i =  1,2. There exists a measure- 

preserving continuous surjection (resp. homeomorphism ) ~ ':  X~ ~ X2 such that 

dp'T, = T~b' and ~b'= ~b a.e. 

2. Pt~oeosmoN [11]. Let (x,,T~,m,) be Markov shifts [or i = 1 , 2 .  I[ 

qb : X,  ~ X2 is a bounded-to-one measure-preserving continuous suriection satis- 

fying ckT, = T~d, then 
IT, = I T  2 o ~9 + g o T~ - g for some g ~ C(X~). 

1 reduces the study of block codes between Markov shifts to that of 

continuous measure-preserving surjections. 

Let (X~, T,, mi), i = 1,2, be Markov shifts of the same entropy and let 

~b : X~ ---> X2 be a continuous, measure-preserving surjection. 4' is then bounded 

to one (see [8]) and, applying 2, we have 

tlr, = tIT2o dp + tg o T~ - tg 

where all functions are continuous and t E R. Applying pressure to both sides of 

this equation we obtain: 

3. PaoeosmoN. I[ 4, :Xa--*X2 is a block code between Markov shi[ts 

(X~, %, m~), i = 1,2, o[ the same entropy then P(tlr,) = P(tlr~) [or all t E R .  
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4. COROLLARY. If the Markov shifts (X~, T~, m, ), i = 1, 2, are block isomorphic 

then P(tlT,) = P(tlT2) for all t E R. 

For the calculation of P(tlr)  we need: 

5. THEOREM [6]. Let (X, T) be a topological Markov chain and let f be a 

function of two coordinates, f ( x )=f (Xo ,  Xl) for x = ( x , ) ~ X .  Then there is a 
unique T-invariant probability m such that P ( f ) =  h (m  ) + f fdm. m is Markov. 

In the notation of 5, m and Pff)  are obtained as follows: 

Suppose (X, T) is given by the n x n irreducible 0-1 matrix A. Consider the 
n x n matrix M = ( e  w'~)) where M ( i , j ) = O  when A ( i , j ) = O .  Let fl > 0  be the 

maximum eigenvalue of M with corresponding strictly positive fight eigenvector 

v = (v(1),. . . ,  v(n)) '~ given by the Perron-Frobenius theorem (see [14]). Then 

P(f)  = log fl and m is given by the stochastic matrix ((v(j)/[3v(i))e mj)) compati- 
ble with A. 

If (X, T, m) is a Bernoulli process given by the probability vector p = 

(Pl . . . .  ,p,),  IT = -E~=lXt,jlogpi so that P(tlT) is obtained by considering the 

matrix M with identical columns v = (PT',. . . ,p: ')". Clearly, My = [3v where 

/3 = ET=~ p:,'. Using the characterization of the maximal eigenvalue given by the 

Perron-Frobenius theorem as the only eigenvalue with a strictly positive 

eigenvector, P(tIT)= log fl = log(X?_l p:,'). This, combined with 3, shows that if 

there is a block code between two Bernoulli shifts given by probability vectors 

p = (p~,.. . ,p,) and q = (q~ . . . . .  @) of the same entropy, then l = n and q may be 

obtained from p by a permutation. We summarize this as 

6. THEOREM. Between two Bernoulli shifts of the same entropy, block codes 
exist if] there is a trivial block isomorphism. In particular two Bernoulli shifts are 
block isomorphic if] there is a trivial block isomorphism between them. 

At the Durham symposium on Ergodic Theory held in June 1980, I learned 
that A. del Junco, M. Keane, B. Kitchens, B. Marcus and L. Swanson also have a 
proof of 6. 

§3. Ruelle measures 

Let (X ÷, T) be a topologically mixing one-sided subshift of finite type, given 

by the 0-1 matrix A with A M > 0. We prove a convergence theorem for Ruelle 

measures. We also show that for any ~ ~ C(X+), r(.Y÷)= e pt*) and that all 

Ruelle measures for $ correspond to this eigenvalue. 

A finite subset F C Y ÷ is (n, e) spanning if for x E X + there exists y E F such 
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(~M+") 1)(X)= 
yET-(M+n)X 

that d(T'x,  T'y)  < e V0 -<__ i < n. It is easy to see that T has the property that for 

x ~  y there is i = 0  with d(T~x, T'y)>½ (i.e. T is expansive with expansive 

constant ½). This observation and a definition of pressure given in [16] show that 

if, for 4~ E C(X+), we put 

O~ ( ck ) = inf { ~F e 'S" * X" ) : F is ( n, ½ ) spanning } 

then e(~b) = lim supn~(1 /n) log  Q. (~b). 

7. LEMMA. Let dp E C(X+). For n > M, 

e -M,,, O~-M (4~) <- ~ 1 <- P~ (ep). 

n _ ~ e(S4,Xyo...y._,x) PROOF. (-~,l)(X)--Xyo-.-y._, where the sum E' is over all (al- 

lowed) words y 0 " "  y.-~ preceding x. Hence 

( Z e : l ) ( x ) ~  2 '  ( sup e",*x~>)<=P~(4~). 
YO'"Yn-I \ 2 E[Yo'"Ym-I] 

For the other inequality note that, since A ~ > 0, for any x, T-~M÷")x (in fact 

T-tM+"-~)x) is an (n,½) spanning set. Now, for n > 0, 

exp(th(y)+ "'" + ~b(T~-~y) 

+ ~ ( T " y ) +  . - .  + ~b(T"+M-'y)) 

e-MII4'll E etS'C')tY) 
y~T-(M+n) x 

___ e-M,*Jr Q. (~). 

8. TI-mOREM. Let dp ~ C(X÷). Then r ( . ~ )  = e P(*) and, for any probability i~, 
(1/ n ) log tt (&e~ 1)---> P ( cb ). Al l  Ruelle measures for ¢h correspond to the eigenvalue 
r (.~cC~, ). 

PROOF. By 7, e-'~"*J'O.-M(4,)<---II~e~lll= < e . ( 6 )  so 

log r ( ~ )  = lim l l o g l l ~ l ] l  

= !!m l l o g  P. (~b) = lim sup l log  O. (~b) = P(~b). 

Similarly, for a probability /~, 7 gives 

e-MII*IIQn-M (4~) =</z ( . ~  1) _--_ Pn (~)  

and we get P ( O ) =  l i m ( 1 / n ) l o g / z ( ~ l ) .  
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If v is a Ruelle measure for 4~, i.e. if ~ v = A v ,  A =(A"(1))  1~"= 
v(.~21) TM ~ r(.~,). Thus A = r (~ , ) .  

9. THEOREM. Let 4) E C(X  +) and let v be a Ruelle measure [or ok. Then for 

f ~ c(x+), 

lira 1 l o g  v(exp $.[)  = P ( f  + 40 - P(40.  
n ~  n 

P~ooF. Observe that 

( . ~ + , ) l ) ( x ) =  ~'~ e 's.cr+*'~y) 
y E T - n ~  

= E e(S"C')~Y)" e (s"/)~Y) 
yET-~x 

= (~2e sJ)(x). 

Put A = e p~*) so that, by 8, - ~  u = Av. We have 

P ( / +  4') = li_~ m l l o g  v(L#~t+,) 1) (by 8) 

= l im~ log v ( ~ ;  e s-r) 

=limllog(A"v(eSJ)) (as LP~v = Av) 
n ~ ' ° °  n 

= P(4 ')  + lim 1 l o g  v(exp S.D. 
n ~  n 

If ~b E C ( X  +) is such that E~=~var.4~ <0% 9 follows easily from Ruelle's 

operator theorem, as is shown in [13]. 9 suggests the definition: 

For f, g E C(X+), P(f/g) = P(f  + g) - P(g) is the conditional pressure o[ ,f 
given g. 9 states that if v is a Ruelle measure for g, ( l /n)  log v(exp S.[)--> Pqlg) .  
The following list of properties of conditional pressure is derived from the 

properties of pressure. 

10. PROPOSITION. Let f, g, h E C(X  +) and c E R. Then, 

(i) Pff +g/h)=P(g/h)+P([/g +h), 
(ii) P(f/h)>=P(g/h) il f>-_g, 
(iii) P ( / / 0 ) =  P ( f ) - h ( T )  where h(T) is the topological entropy, 
(iv) P(f /h)  = P([ + go T - g/h), 

(v) P(f  + c / h ) =  P(J:/h)+c. 
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§4. Regular isomorphisms 

Let (X~, T~, rr~) be finite state processes with state partitions ai (i = 1,2). For 

i = I, 2 denote by a / t h e  "past"  o'-algebra generated by the cylinders [Xo" • x~] ~ 

with m _-> 0. a 7 is the smallest cr-algebra containing the partitions T~-" ai, n ___> 0, 
a ?  = V~=o Tr,"a~. An  isomorphism ~b :X~--~ X2 of the processes (i.e. invertible 

measure-preserving th with ~bT~ = T2~b) is a regular isomorphism if there exists 

p _-> 0 such that ~b-la2 C TPa7 and tha~- C TPa~. We need 

11. PROPOSITION [11]. Suppose ¢k :X~--~ X2 is a regular isomorphism of the 
processes (X~, T~, m, ), i = 1, 2. Let 1 <= q <-_ oo. Then IT, E L q (X~) iff IT~ E L q (X2) 

and, in this case, 

for some g ELq(X~).  

Ir,= Ir~°c~ + g°  T ~ - g  

When ¢k:X1--~X2 is a regular isomorphism of Markov shifts (X~, T~, mi), 

i = 1, 2, 11 gives 

Ir, = Ir2° c~ + g ° Tl - g 

for some g E L~(X1), since the information cocycles of Markov shifts are 

bounded.  Moreover,  P ( -  17,) = P ( -  IT2) = 0. Hence for t E R we have 

P((t - 1)It,) = lim I log f e tsnlr l d m  l 
n ~  n J 

= l i m l  log f e'SdT2°*e'(S°rT-g)dml 

= l i m l l o g f  e'SJT;*dml (since g E L®(X1)) 

= !!m 1 log f e'S.'T dm2 = e ( ( t -  1)tT2). 

Thus, the following analogue of 4 and 6 holds: 

12. THEOREM. I f  the Markov shifts (X~, T~, mi), i = L2,  are regularly isomor- 

phic then P(tlT,)=P(tlT~) for all t E R. Two Bernoulli shifts are regularly 

isomorphic iff there is a trivial regular isomorphism between them. 

It is interesting to note that (on taking t = 0 in 12) topological entropy is 

established as an invariant of regular isomorphism of Markov shifts. 
In [4] Keane and Smorodinsky proved that entropy is a complete invariant for 
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finitary isomorphism of Bernoulli shifts. In contrast to this, 12 shows that no 

finitary isomorphism of "distinct" Bernoulli shifts may have bounded future 

coding time for both the isomorphism and its inverse. For the intermediate 

notion of finitary isomorphism with finite expected (future) coding times, Parry 

has shown in [9] that entropy is not a complete invariant, but it is not known if 

any such isomorphisms exist between "distinct" Bernoulli shifts. Here we use 

"distinct" to mean that one process cannot be obtained from the other by a 

permutation of states. 

I would like to thank Dr. Klaus Schmidt for suggesting the use of limits as 

above as a way of capturing our invariants for Bernoulli shifts. 

§5. Finite equivalence, ratio variational principle 

A Markov shift (Y, S,p)  is said to be a finite extension of another, (X, T, m), 

(and ( X , T , m )  a finite factor of ( Y , S , p ) )  if there exists a bounded-to-one 

continuous measure-preserving surjection ck:Y---~X with 4,S = T4,. Such 4~ 

preserve entropy and P ( fo  4) )=  P( f )  for all f ~ C(X) .  

Two Markov shifts (X,,  T~,ml) and (X2, T2, m:) are said to be finitely 

equivalent if they have a common Markov finite extension. This is the topologi- 

cal equivalence relations of [8] (also called finite equivalence) and [1] with 

Markov measures. 

It is easy to see from 5 that if (X, T, m) is a Markov shift then h (m)  - f ITdm = 

P ( - I T )  = 0. It is also easy to see that 5 extends to functions of finitely many 

coordinates and multiple Markov measures. We will make use of these facts in 

the next proof. 

13. LEMMn. Let (X, T, m )  be a Markov shift and ( Y, S)  a topological Markov 

chain. I f  ck : Y---* X is a bounded-to-one continuous surjection satisfying dpS = Tck 

then on ( Y, S )  there is a unique invariant probability p which makes ~b measure- 

preserving, p is multiple Markov. 

PROOf. Note that, as ~b is bounded-to-one,  P ( - I z o c k ) = P ( - I T )  and 

h(q o ck -1) = h (q )  for any invariant q E M ( Y ) .  Since ~b is continuous - I T  o 4~ 

depends only on a finite number of coordinates of Y. Applying the extension of 5 

we see that there is a unique invariant p E M ( Y )  satisfying h ( p ) -  f IT o 4~dp = 

P ( -  Ir  o ~b) and that p is multiple Markov. Moreover  

h ( m )  - 1 Irdm = P( - IT) ---- P(  - Ir  o 6 )  
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and, by the uniqueness in 5 applied to - IT, m = p o $-1. To see that p is the only 

invariant probability which makes $ measure-preserving observe that if in- 

variant q E M ( Y )  satisfies m = q o $ - '  then 

h(q)-f ITo$dq=h(m)-f I r d m = P ( - I T ) = P ( - I T o $ ) .  

14. PROPOSITION. I f  tWO Markov shifts have a common Markov finite factor 
then they have a common Markov finite extension. 

PROOF. Let ( X ,  T,, m~) and (X2, T2, m2) be Markov shifts with another 

Markov shift (Z, R, q) as a common finite factor, by ~'t and Ir2 say. In [1] (2.14 

and 3.36) it is shown that there is then a topological Markov chain (Y, S) and, for 

i = 1, 2, bounded-to-one continuous surjections $, : Y ~ X~ such that $~S = T~$~ 

and Ir,$~ = rr252. It is sufficient to find a multiple Markov measure p on Y that 

makes both $~ and $2 measure-preserving; we may then pass to a conjugate 

topological Markov chain on which p gives a Markov measure (of memory one). 

According to 13 there are uniquely defined multiple Markov measures p~, p2 on 
Y that make $~, $2 measure-preserving, respectively. Both pt and p2 make the 

map rr~$~ = rr252 measure-preserving, and on applying 13 to ~'~$1 we see that 
pl = p2.' 

We may now easily see that finite equivalence of Markov shifts is an 

equivalence relation. Reflexivity and symmetry are clear. For transitivity sup- 

pose that, for i = 1,2, (Z,, R,,q,) and (Z ,R ,q )  are finitely equivalent by a 

common finite extension (X~, T~, m~). We then have a diagram of Markov shifts 

and bounded-to-one measure-preserving surjective maps 

(Y,S,P) 

(X,, T,, m,) (X2, i/'2, m2) 

(Z , ,R , ,q , )  (Z ,R ,q )  (Z2,R2,q2) 

where (Y, S, p) and $,,  ~b2 are obtained from 14. Now (Z,, R,,  q,) and (Z2, R2, q2) 

are finite factors of (Y, S, p), by ~r[ o $~ and rr~ o $2 respectively, and transitivity is 

verified. 

t I would like to thank the referee for his remark  towards the simplification of this proof. 
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It follows from 3 that if (X1, T,, m,) and (X2, T2, m2) are finitely equivalent 

Markov shifts then P(tlT,)= P(tlr2) for all t E R. In particular, Bernoulli shifts 

given by the probability vectors p and q are not finitely equivalent unless q can 

be obtained from p by a permutation. 

Finally we prove a ratio variational principle (see also [2] and [10]). 

15. THEOREM (Ratio Variational Principle). Let ( X  +, T) be a topologically 
mixing one-sided subshift of finite type given by the 0-1 matrix A with A M > O. Let 
d~ E C ( X  ÷) be such that ck > 0  and Y.:=~var,4, < ~ .  Then there is a unique 

T-invariant probability m such that 

h (F)  < h ( m )  
Ix(~b) = m(~b) 

for all T-invariant probabilities. 

PROOF. Consider the Ruelle operators LP ,/, for t ~ R, t > 0. By Ruelle's 

theorem, for each t > 0 there are unique A, > 0, v,, h, > 0 such that v, (h,) = 1, 
~_,/,h, = A,h,, ~LP*~/,v, = A,v, and, for f E C(X+), A-"(.Z",/,[)--> v, (f)h, in C(X+). 

Suppose to > 0 is such that A~ = 1. Since A~ = e P~-*/'°), this means P ( -  S/to)= 
0. By RueUe's theorem, the measure m defined r e ( f ) =  v~(hJ) ,  f E C(X+), is 

the only T-invariant probability for which h ( m ) - (1/ to)m ( ck ) = P ( - S/to) = O. 
Thus h (m) /m (ok) = 1~to and, for T-invariant IX # m, h (Ix) - (1/t0)Ix (tk) < 0, i.e. 

h(Ix)/Ix(4,) < l l t o .  

It remains to show that there exists to > 0 with A~ = 1. We have 

( ~ - , / , 1 ) ( x ) =  ~ e *(Y)" 
yET-Ix 

so L~_,/, 1 ~ 0 in C ( X  ÷) as t --> 0. It follows that, as t ~ 0, A, = v, (.Z_,/, 1)--* 0. 

Now t a k e 0 < e < ½ a n d S > 0 s u c h t h a t l e ' - i  I < e  wheneve r l s l  < & L e t  t > 0  

be such that llck/tll< 8/M. Then, 

(~C_%,,l)(x)= ~ e - ' ' ' ' , ' ( ' ) + * ( ~ ' ,  . . . . .  " ' ~ " - " ) )  
reT-ux 

_--> ~ ( 1 - e ) - - - - > 2 ( 1 - e ) > l  as A M > 0 .  

(The theorem holds when X ÷ consists of a point. We assume X ÷ is not a point so 

that there are at least two states.) Now 

A,M=V,(~M-,/,1)>I and A , > I .  
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Finally, note that, as pressure is continuous, the function t ---> A, = e"~-*/'), t > 0, 

is continuous. 

For ck~C(X ÷) such that ~k>0,  ET=lvar,~b <o0 put R(ck)=h(m)/m(c~) 
where m is given by 15. We see from 2 that for s ~ [ - m a x / T , - m i n l T ] ,  

R(Ir +s) are invariants of block isomorphism and of finite equivalence of 

Markov shifts. These invariants, however, are more difficult to compute than the 

ones we have used. 
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